
Enhancing Malware Fingerprinting through Analysis
of Evasive Techniques

Alsharif Abuadbba
CSIRO’s Data61

Australia
sharif.abuadbba@data61.csiro.au

Sean Lamont
Defence Science and Technology

Group
Australia

sean.lamont2@defence.gov.au

Ejaz Ahmed
CSIRO’s Data61

Australia
ejaz.ahmed@data61.csiro.au

Cody Christopher
CSIRO’s Data61

Australia
cody.christopher@data61.csiro.au

Muhammad Ikram
Macquarie University

Australia
muhammad.ikram@mq.edu.au

Uday Tupakula
University of Newcastle

Australia
uday.tupakula@newcastle.edu.au

Daniel Coscia
Defence Science and Technology

Group
Australia

daniel.coscia1@defence.gov.au

Mohamed Ali Kaafar
Macquarie University

Australia
dali.kaafar@mq.edu.au

Surya Nepal
CSIRO’s Data61

Australia
surya.nepal@data61.csiro.au

ABSTRACT
As malware detection methods become more advanced and
widespread, malware authors respond by adopting more
sophisticated evasion mechanisms. However, traditional file-
level fingerprinting, such as those provided by cryptographic
and fuzzy hashes, is often overlooked as a potential target
of evasion. Small variants within binary components are
commonly used in malware attacks to evade traditional fin-
gerprinting, as confirmed by Microsoft’s discovery of the
GoldMax variations in 2020 and 2021. Despite this, no large-
scale empirical studies have investigated the limitations of
traditional malware fingerprinting methods applied to actual
samples obtained from the wild and how their effectiveness
could be improved.
This paper addresses these gaps by answering three key

questions: (a) To what extent are file variants commonly
used in malware samples? To answer this question, we con-
duct an empirical study of a large-scale dataset of 4 million
Windows Portable Executable (PE) files reports, 21 million
sections, and 48 million resources, which we split chronolog-
ically into four groups to validate our analysis. Our findings
suggest a high prevalence of similarities in deeper parts of
PE files between 70% to 80%, including similar APIs in Im-
port Libraries and common executable sections. (b) What file
variant evasive methods can be observed? To answer this
question, we cluster files with high similarities in their Im-
port Libraries and common executable sections and labelled
these clusters “Resilient fingerprints” after validating their
maliciousness ground truth through the Virustotal vendor

labels. We then conduct a qualitative analysis across our four
groups to identify the variant parts of the top resilient finger-
prints. Our findings indicate that non-functional mutations
- such as alterations in the number of sections, virtual size,
virtual address, and section names - are being used exten-
sively as primary evasive variant tactics.We also identify two
executable sections of interest that are similar within each
resilient fingerprint, which we call malicious sections (high
entropy > 5) and camouflage sections (entropy = 0). (c) How
can we use these identified characteristics to improve mal-
ware fingerprinting? To answer this question, we proposed
two novel approaches that enhance malware fingerprinting
and enable the identification of resilient fingerprints. Using
a large dataset of 4 million feeds from VirusTotal, our find-
ings indicate a large potential improvement in fingerprinting,
with more than 50% of malware being identified compared
to 20% using traditional fingerprinting approaches.

KEYWORDS
Malware Detection, Fingerprinting, Systematic analysis.

1 INTRODUCTION
Advances in static and dynamic malware analysis have sig-
nificantly improved the ability to detect and prevent malware
attacks. Static analysis techniques [1, 2] involve examining
the characteristics of a file without executing it, whereas
dynamic analysis techniques observe the behavior of the
software as it runs in a virtual environment [3–5]. Static
analysis is notably faster than dynamic analysis. However,

ar
X

iv
:2

50
3.

06
49

5v
1

 [
cs

.C
R

]
 9

 M
ar

 2
02

5

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

when dealing with large datasets, the process of extracting all
relevant file characteristics, including obtaining disassembly
using commercial tools like IDA Pro [6], can still be time-
consuming. As a result, malware fingerprinting is often used
for detection as the first triaging mechanism [7] to narrow
the search space of files for further investigation.

Malware fingerprinting is primarily based on file hashing.
The output of hashing, which is commonly used and shared
between cybersecurity teams, takes the form of checksums
or unique identifiers for first triaging. There are two types
of hash-based file-level fingerprinting techniques: crypto-
graphic hashing and fuzzy hashing [8]. It is common practice
to use the SHA-256 cryptographic hash to query a knowl-
edge database like VirusTotal [9] to determine whether a file
is malicious or not. Security analysts use hashes as labels,
which are shared with other analysts to help them identify
malware. They are subsequently queried in online reposito-
ries to determine if the hash has been previously identified.

While file-level hash fingerprinting is fast and useful, tradi-
tional cryptographic hashing poses a challenge in identifying
similar malware. This is because cryptographic hashing re-
lies on concealing the correlation between the original entity
and the hash value. Even one character change in the origi-
nal entity, such as a file, results in a radically different hash,
making identifying similar malware challenging. Another
type of malware fingerprinting is fuzzy hashing. This over-
comes the limitations of cryptographic hashing by producing
similar hashes even when files are slightly changed, thereby
making it more tolerant to evasion methods [10]. Microsoft
365 recently confirmed that the GoldMax malware sample
was first submitted to VirusTotal in September 2020, then
reappeared in June 2021 with a new hash [11]. Despite some
variation, both versions of GoldMax were captured by fuzzy
hashing as the same, which cryptographic hashing failed to
do.

Security analysts, including Microsoft Threat Intelligence
Center, have reported indications (e.g., GoldMax malware)
that attackers have exploited the limitations of both types
of hashes by creating multiple copies of sophisticated mal-
ware with variations resulting in significantly different new
ones [11]. However, while there have been many studies
investigating various malware-related activities, such as liv-
ing off the land [12], IoT [13], Web [14], Linux [15], and
sandboxing [16], there have been no systematic large-scale
empirical studies investigating malware fingerprinting from
real samples in the wild. Conducting such a study would
answer the important question: Is there a large number of
functionally similar malware being undetected by traditional
fingerprinting methods? Strengthening the malware finger-
printing stage is crucial for the early triaging of potentially a
large number of files, as it can enhance the explainability and

effectiveness of subsequent, more extensive, and expensive
forms of analysis.
This motivates our study, which we address through the

following three research questions (RQs):

RQ1. To what extent are file variations commonly used
in malware samples?

Building on this, we try to shed light on some of the trends
in the current threat landscape to identify:

RQ2.What file variation evasive methods can be observed
in each malware sample?
RQ3. How can we use the identified invariant file parts

to improve malware fingerprinting?
To study to what extent file variations are used within

malware (RQ1), we conduct a systematic analysis of high-
level file information and detailed metadata to investigate the
prevalence of file variations. We collect a large-scale dataset
from VirusTotal, which contains all reported files worldwide
on a per-minute basis, over two separate periods of time (9
months apart), including detailed reports for each suspicious
file at both high-level and detailed levels (see Section 3 for
further details). To ensure consistency in our analysis and
findings, we focus on PE files of Windows operating systems,
as they constitute up to 50% all submitted files. We divide
the dataset into four chronological groups to investigate the
generalisability of our findings across different time periods.
After examination, we found that traditional fingerprinting
techniques have limited effectiveness in detecting similar
malware files — Cryptographic hash can only identify 16%
to 18.5% of the files, while fuzzy hash performs slightly bet-
ter, detecting 17.9% to 20.7% of the files. Analyzing deeper
parts of the files as depicted in Fig. 1 indicates a significant
number of them shared common characteristics. Specifically,
approximately 80% of the files contained common Import
Lists, while around 70% of the files had some similar sections.
Also, roughly 80% of the files had comparable resources, as
elaborated in Section 4.
To address RQ2, we delve deeper into the files with com-

mon connections and investigate both the variant and invari-
ant components of the malware samples. Firstly, we establish
the ground truth of these identified files and ensure their ma-
licious nature using the VirusTotal vendor labels. Secondly,
we categorize the files with variations (different traditional
hash) but common critical invariant components into groups
called “Resilient fingerprints” and perform a qualitative anal-
ysis. Our findings suggest that two invariant components
within the malware files could be used to connect and detect
a deep fingerprint together. These invariant components are
the Import Libraries, which contain a list of functionalities
and common sections — we refer to as “camouflage sections”
and “malicious sections”, as explained in Section 5. We find
the size of these resilient fingerprints can be quite large (e.g.,

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

Longevity
• First/last seen
• First/last analysis
• Creation date
• …..

General info
• Names / Packers
• PE info
• Main_icon
• ……

Fingerprints
• MD5
• SHA1 / SHA-256
• TLSH / SSDEEP
• ……

Vendors’ Labelling
• Total Votes
• Each Vendor
• Suspicious Tags
• ……

Import Lists

Sections

Resources

Library 1

Library 2

Library N

Section 1

Section 2

Section N

Resource 1

Resource 2

Resource N

Function 1

Function 2

Function N

High Level Detailed Level

Figure 1: VirusTotal report granularity per file.

27,091 files). On the other hand, we also identify many non-
functional variant evasive parts that are mutated between these
files to obfuscate the hash, including the number of sections,
virtual size, virtual address, and section names (outlined in
Section 5).

To address RQ3, we aim to enhance malware fingerprint-
ing by leveraging the findings from the previous two RQs.We
propose two clustering approaches, Top-Down and Bottom-
Up. As depicted in VirusTotal detailed level in Figure 1, the
Top-Down approach initially clusters resilient fingerprints
based on similarities in their Import Libraries and a list of
functionalities. It then proceeds to identify common cam-
ouflage and malicious sections within that cluster. On the
other hand, the Bottom-Up approach clusters all files from
lower levels relying on common sections, such as camou-
flage and malicious sections. Our proposed methods have
demonstrated consistent performance across four datasets.
Both approaches have successfully identified between 30% (Top-
Down) and 58% (Bottom-Up) of reported suspicious files con-
nected using resilient fingerprinting strategies, outperforming
traditional fingerprinting mechanisms by up to three times.
Our work is intended to augment the existing traditional fin-
gerprinting techniques, rather than replace them altogether.
Our proposed approaches are not to classify files as mali-
cious or benign but rather have been designed to enhance
early triaging efforts by implementing amore comprehensive
and thorough fingerprinting mechanism. This mechanism
can capture a broader spectrum of variations of common
malware files, as detailed in Section 6.

By answering the three RQs, this paper makes the follow-
ing main contributions:

• To the best of our knowledge, this paper presents the
first large-scale systematic analysis investigating the
prevalence of malware file variations and quantifying
the limitations of traditional file-level fingerprinting.

• We systematically identify file variation evasivemeth-
ods for bypassing traditional fingerprinting, and iden-
tify significant invariant components that can be used
to improve early triage fingerprinting.

• We propose two novel approaches, Top-Down and
Bottom-Up, that allow for identifying similar files at
different levels, improving the efficacy of the early
triage process.

• Our evaluation is extensive and based on a dataset of
live feeds collected from VirusTotal, including over 4
million file reports, 21 million sections, and 48million
resources. Our results indicate that similarities within
low-level parts are highly prevalent, while traditional
hash-based methods are less effective, achieving a
detection rate of only 20% within the 4 million feeds.
Using the invariant parts we identified, we demon-
strate that early triaging fingerprinting can be im-
proved by more than 50%, representing a significant
improvement over traditional methods. Furthermore,
we plan to make all of our code and analysis public,
providing researchers and practitioners with valuable
resources to inform future research in the field.

2 BACKGROUND
VirusTotal Platform. VirusTotal is a widely known service
that scans files and web addresses to detect whether they
are malicious among many existing techniques [9, 17–21]. In
particular, file scanning is one of the most important types
of features in the VirusTotal API and aims to detect files
that deliver malware. As can be seen in Figure 2, VirusTotal
collaborates with 71 external third-party security providers
(see the full list at [9]). Following the submission of a file to
VirusTotal via the scanning API [22], VirusTotal performs
two actions: (1) searches for an already existing file hash
(SHA256) within their cached database, if the hash does
not exist, then (2) forward the file to these vendors (i.e.,
anti-virus engines or online scanning services). VirusTotal
retains records of the scanned files and corresponding results
obtained from vendors in its database, which can be queried
via the VirusTotal Report API [22].

Scan API

Query API

VirusTotal
Database

Vendor 1

Vendor 2

Vendor 3

Vendor N

Scan API 1

Scan API 2

Scan API 3

Scan API N

VirusTotal Service 3rd Party Vendors

Figure 2: VirusTotal Feeds APIs and interaction with
third-party security vendors overview.

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

Malware Fingerprinting and Vendor Labeling. The re-
search community has extensively used VirusTotal to iden-
tify malicious files [23–30] as well as suspicious IP addresses
and URLs [31–34]. Researchers usually integrate the labels
from several vendors because vendors frequently disagree
with one another as they are using different mechanisms
to check those files. Remember that when a file is provided,
VirusTotal returns 71 labels from the vendors. We find that
the majority of papers specify a threshold 𝑡 : the file is consid-
ered malicious if at least 𝑡 vendors return a “malicious” label.
The majority of papers set 𝑡 = 2 to 4 [23–26, 31], while a few
papers further relax 𝑡 = 1 [27–30, 32]. On the other hand,
rarely researchers use a large threshold such as 40 when
labelling malware files [35, 36], which has been shown to be
ineffective [37]. We therefore use a conservative 𝑡=4 following
the majority of literature when deciding the ground truth of
the collected samples.

3 METHODOLOGY
We perform a systematic large-scale empirical study on real-
world malware samples to examine how they vary evasive
strategies. In this section, we detail our approach to data col-
lection, data characteristics, and our systematic investigation
of the aforementioned three research questions.

3.1 Data Collection
We utilize the VirusTotal API, specifically the File Feeds,
which provide detailed, JSON-encoded reports about exam-
ined files worldwide, generated in batches every minute.
Each batch is a text file containing one JSON structure per
line, detailing the file’s header, import list functions, sec-
tions, and resources, as depicted in Figure 1. These reports
are automatically collected using a scheduled cron job. To
validate our findings, we gathered VirusTotal batches from
two periods: ten weeks from March 29th, 2022, to June 25th,
2022, and three weeks from March 27th, 2023, to April 17th,
2023.

3.2 Data Characteristics
File Types.We analyze the file types in the collected batches
using the “FileType” tag within each report, which is defined
by the VirusTotal community. The top ten most common file
types identified are Win32 EXE, HTML, Win32 DLL, Win64
EXE, XML, ZIP, TXT, Win64 DLL, ELF executable, and PDF.
Approximately 50% of the files are PE files from Windows
operating systems, consistent with the findings of [38]. PE
files, including Win32 EXE, Win32 DLL, Win64 EXE, and
Win64 DLL, are selected for investigating file variations due
to their abundance and suitability for a reliable empirical
study.

PE File Report Structure. The report structure for a file
can be categorized into two parts – high level and detailed
level. The high level part, as shown in Figure 1, is primarily
metadata such as submission date/time, type, hash (MD5,
SHA256, and TLSH) and size. It also includes the vendors’
votes about the maliciousness of the file. The detailed part
of the report focuses on deeper segments of the files. This
includes the import libraries, list functionalities, sections of
code blocks and resources containing, for example, icons.
For each of these, VirusTotal provides additional detailed
metadata, such as the number of sections or imports. There
are also detailed characteristics of each section, including its
content hash, entropy, name, virtual size, and virtual address.

3.3 Systematic Process
To ensure study reliability, we divide the collected data from
March to June 2022 into three groups (1-3), and the second
dataset from March to April 2023 into the fourth group. Each
group contains slightly over three weeks of file reports, with
approximately 1,061,151 reports per group (Table 1). A re-
lationship is observed between files and their number of
sections and resources. On average, files have around 5 sec-
tions and 12 resources, with most having 3 sections and a
smaller portion having a larger number of sections (>9). Ad-
ditionally, Table 2 presents the file types distribution. The
majority of the files (around 60%) are Win32 EXE, followed
by Win32 DLL files (approximately 19%). The combined per-
centage of Win64 EXE/DLL files is less than 20%. Notably,
a significant portion of the files (between 34% and 42%) are
categorized as benign by VirusTotal vendor labeling (refer
to Table 10 in Appendix A for detailed label statistics).

Table 1: Groups files, sections and resources detail.
Group 1 Group 2 Group 3 Group 4

Files 1,061,151 1,061,151 1,061,151 1,061,151
Sections 5,679,597 5,481,258 5,441,488 6,263,307
Resources 12,589,924 12,715,782 11,159,391 13,627,706

Table 2: File Types distribution of four groups.
Group 1 Group 2 Group 3 Group 4

File Type Count % Count % Count % Count %
Win32 EXE 666,583 62.8 643,955 60.6 612,417 57.7 801,322 75.5
Win32 DLL 207,323 19.5 221,605 20.8 202,667 19.1 130,598 12.3
Win64 EXE 104,251 9.8 105,580 9.9 95,553 9.0 67,292 6.3
Win64 DLL 82,899 7.8 80,012 7.5 77,285 7.2 61,844 5.8

4 PREVALENCE OF FILE VARIATION
This section’s focus is on answering RQ 1: To what extent
are file variations commonly used in malware samples? Here
we aim to investigate the similarity of files at a deeper level
than that given by traditional fingerprinting. We start with
an overview, then focus on various file components where

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

we believe similarities could be captured with examples. We
finally present the obtained results and how consistent they
are among the four groups.

4.1 Overview
We start by examining how many similar files can be identi-
fied using traditional file fingerprinting techniques. We take
SHA256 and TLSH to represent cryptographic and fuzzy
hashing respectively.

The obtained results seem consistent across the 4 groups
with low similarities of 16%-20% (see Results Section 4.5).
We then investigate the prevalence of non-functional file
variations, which are done to alter the hash of the file. This
is an evasion technique employed by malware authors to
bypass traditional hash-based fingerprinting. For example, a
malware author may modify a previously detected malicious
file by padding the file with non-functional content, thereby
changing the hash and avoiding detection. We identify three
parts within a file that are representative of the actual intent
of the file. When these are common between two files with
unique hashes, this is indicative of file variations. These parts
are the import libraries’ list of functionalities, sections, and
resources. Next, we elaborate further on each of these parts
with illustrations before presenting the obtained results.

4.2 Import Libraries with List of Functions
The import list contains a detailed list of functions imported
from other libraries that are used by files to achieve their
intent. Figure 3 is an example import list extracted from a
sample malware file. The file imports six libraries and a few
functions from each library. Observing these functions, secu-
rity analysts would typically infer some of the file intentions.
For example, the file is importing (Library 4: ADVAPI32.DLL),
which is known to provide access to core Windows com-
ponents such as Service Manager and Registry. Observing
functions 4-7 from this library, we can see that the malware
file actually alters the Registry by creating an entry and
setting up its value. The second example is the import (Li-
brary 6: KERNEL32.DLL), which provides core functionalities
such as access and manipulation of files, memory, and hard-
ware. Looking at some of the highlighted functions 2-7, we
observe the file actually copies files, creates processes, and
then deletes those files.

It is clear that observing the similarities of the import list
would be a reliable indication of common intent. We adopt
a cautious approach by stipulating that for us to consider
two files as variations, they must exhibit a 100% similarity of
the entire imported list of libraries and imported functions
while having different file hashes.

Library1: WININET.DLL

Import Functions
1. DeleteUrlCacheEntry
2. FindFirstUrlChacheEntryA
3. FindNextUrlChacheEntryA

Library2: OLEAUT32.DLL

Import Functions
1. SysAllocString

Library4: ADVAPI32.DLL

Import Functions
1. GetSecurityInfo
2. GetUserNameA
3. RegCloseKey
4. RegCreateKeyExA
5. RegOpenKeyExA
6. RegQueryValueExA
7. RegSetValueExA
8. SetEntriesInAcIA
9. SetSecurityInfo

Library3: OLE32.DLL

Import Functions
1. CLSDFromString
2. CoCreateInstance
3. CoInitialize
4. CoUninitialize

Library5: USER32.DLL

Import Functions

1. CallWindowProcA
2. CreateDesktopA
3. CreateWindowExA
4. DefWindowProcA
5. DestroyWindow
6. DispatchMessageA
7. FindWindowA
8. GetClassNameA
9. GetForgroundWindow
10. GetMessageA
11. GetThreadDesktop
12. GetWindow
13. GetWindowLongA
14. GetWindowRect
15. GetWindowTextA
16. LoadCursorA
17. LoadIconA
18. MessageBoxA
19. MoveWindow
20. PostQuitMessage
21. RegisterClassA
22. SendMessageA
23. SetFocus
24. SetThreadDesktop
25. SetTimer
26. SetWindowLongA
27. ShowWindow
28. TranslateMessage

Library6: KERNEL32.DLL

Import Functions

1. CloseHandle
2. CopyFileA
3. CreatFileA
4. CreateMutexA
5. CreateProcessA
6. CreateThread
7. DeleteFileA
8. ExitProcess
9. ExpandEnvironmentStringsA
10. GetCommandLineA
11. GetComputerNameA
12. GetCurrentProcessId
13. GetCurrentThreadId
14. GetExitCodeThread
15. GetFileSize
16. GetModuleFileNameA
17. GetModuleHanldeA
18. GetProcAddress
19. GetSystemDirectoryA
20. GetTempPathA
21. GetTickCount
22. getVersion
23. GetVersionExA
24. GetWindowDirectoryA
25. GlobalMemoryStatus
26. InterLockedIncrement
27. IsBadWriterPtr
28. LoadLibraryA
29. LocalAlloc
30. LocalFree
31. …..

Figure 3: Import List – each pair of boxes shows the im-
ported library and a list of functions from that library.

Table 3: Section metadata provided by VirusTotal.
Metadata Value

MD5 a0a2aedaaf49ad428951a94bf6038890
Chi-squared 80,784.76

Entropy 7.5
Name updateRegistry.text

Raw_size 32,340
Virtual_Address 4,096

Virtual_Size 32,340
Flags rwx

4.3 Sections of PE Files - Executable Code
A PE file comprises several sections, each containing exe-
cutable code or relevant details related to the executable
code. The sections could be one of the following types: “.text”
contains the executable code; “.rdata” holds read-only data
that is globally accessible within the program; “.data” stores
global data accessed throughout the program; “.rsrc” stores
resources needed by the executable.

Having two files sharing the same code blocks while pro-
ducing two different file hashes might be an indication of
malware file variation. Consequently, we use sections as an-
other indication of the prevalence of file variations. Through
the collected VirusTotal feeds, we have detailed information
about every section within the file. For example, Table 3
shows one of four sections of a real malware sample we
collected. The table shows that the sections’ metadata has
fine-grained details, including its content hash, name/type,
entropy, raw_size, virtual_address, and virtual_size, which
could be a reliable source to identify the similarities.

4.4 Resources of PE Files – non-Executables
The resources part of a file contains non-executable materials
such as icons, images and strings. Resource types could in-
clude Data, ASCII text, Image/x-png, Lotus 1-2-3, Image/gif,

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

or Audio/mpeg. Our findings suggest that resources may be
less effective in indicating the intent of a file as they can be
similar between behaviorally different files. This is because
these resources, such as Microsoft logos, may be used by
both benign and malware samples (refer to Appendix C for
further detail). Similar to sections, the available resource’s
metadata from VirusTotal feeds has detailed information,
including its content hash, type, entropy, chi2, and typeX.

4.5 Results
We cluster based on content similarity match using the above
three critical file parts to compare against the traditional file
level hash fingerprinting. Figure 4 shows the obtained results
across the four groups. To calculate redundancy on the y-axis,
we follow these steps. Firstly, we apply a unique function to
a set of 𝑁 files hashes (e.g., 100). This process helps us deter-
mine the count of unique hashes, represented as 𝑈 (e.g., 84).
To find the number of redundant hashes, we subtract𝑈 from
𝑁 , resulting in 16 (100 - 84 = 16). It is clear that traditional
file level hash (SHA256 and TLSH) could only identify be-
tween 16%-20% file redundancy within each group. However,
when we dig deeper into various critical parts of the files
like the import list, sections, and resources, we could see the
similarity of 82%-84% using the import list of libraries and
used functions, 70%-80% using the part of the sections, and
83%-85% using the resources. These findings have motivated
us to delve deeper into identifying the specific variant parts
and to investigate how we can leverage these similarities at a
more profound level to develop sophisticated fingerprinting
techniques.

Group 1 Group 2 Group 3 Group 4
Datasets

0

20

40

60

80

Re
du

nd
an

cy
 %

SHA256 TLSH ImportList Sections Resources

Figure 4: File Prevalence.

Answer RQ 1: Recent trends in the malware field indicate a
widespread adoption of file variation. Analyzing over 4 million
files, 21 million sections, and 48 million resources, the findings
reveal that traditional file hash identifies only <20% redundancy.
However, delving further into file components uncovers over 80%
similarities, making it a valuable initial triaging mechanism.

5 MALWARE VARIATION EVASIVE
METHODS

In this section, we aim to address RQ 2: What file varia-
tion evasive methods can we observe per malware sample?
To accomplish this, we establish two key elements. We first
develop a method for grouping different malware files with
the same behaviour into clusters. We refer to these as “Re-
silient fingerprints”, which we define formally in Section 5.1.
Variations within these groups answer the question of what
evasive methods are used. Secondly, we confirm that these
clusters are indeed malicious, as discussed in Section 5.2.
Finally, we will delve deeper into the identified resilient fin-
gerprints to identify both variant and invariant parts, as
presented in Sections 5.4 and 5.3. We also identify certain
unreliable invariant components (see Appendix C).

5.1 Resilient Fingerprints Definition
In this section, we introduce the concept of “Resilient finger-
prints” for the purpose of our analysis. A resilient fingerprint
refers to a set of PE files that share the same system func-
tionalities while appearing different at a surface level (i.e.,
having different file-level hashes). We have found that the
most informative aspect of a file that captures its intent is
the set of import libraries and the functions they contain, as
well as their executable sections, as described in Section 4.2
and illustrated in Figure 3. These libraries and functions re-
flect the system functionalities that the file calls upon to
perform its actions. For example, the presence of the Ad-
vapi32.dll library with functions such as RegCreateKeyExA,
RegOpenKeyExA, RegQueryValueExA, and RegSetValueExA in
a file’s import libraries would indicate tampering with the
Registry. Similarly, the presence of the KERNEL32.dll library
with functions such as CopyFileA, CreateFileA, CreatePro-
cessA, CreateThread, and DeleteFileA would indicate memory
and file operations. Our analysis considers two files to be part
of the same resilient fingerprint if they have 100% similar
import libraries and functions, followed by an examination
of common executable sections. While these thresholds can
be adjusted with certain percentages, we find that files must
have common executable section code blocks in addition to
the import lists to execute that intent, as determined through
thorough analysis.

5.2 Resilient Fingerprints Qualitative
Analysis

In this paper, we thoroughly investigate the resilient finger-
prints within the four groups’ datasets by examining their
ground truth labels using data collected from VirusTotal ven-
dors. Our focus in this section is on a qualitative analysis of
the top 4-5 resilient fingerprints from each group with a sig-
nificant number of files (threshold >= 900). To gain a deeper

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

understanding of each resilient fingerprint, we analyze its
intent, tag (a simplified version of a unique identifier), type
(the operating system file targeted), characteristics (mali-
cious activities), file number (number of files identified with
similar import lists and functionalities), longevity (times-
tamp of the campaign), and file level hash fingerprint (the
percentage of identified files with similar file hashes that
have been detected using traditional fingerprinting methods
such as SHA256).
Findings.We summarize our findings in Table 4, identifying
18 resilient fingerprints with intents like Worm Autospread,
Trojan Zombie, Trojan Spyware, Trojan Mira, and Trojan-
Dropper. Noteworthy insights include: (1) These fingerprints
have large sizes, up to 34,068 files, but traditional SHA256
file-level hash fingerprinting methods perform poorly (15
out of 18 cases <10%) in detecting them as similar due to
evasion techniques employed by malware authors. (2) They
target both Win32/64 and EXE/DLL, indicating widespread
use of evasion tactics. (3) Some fingerprints date back to 1992
and continue until 2022, highlighting the presence of long-
standing malware utilizing known system functionalities
that go undetected by traditional fingerprinting mechanisms.
(4) Certain resilient fingerprints reappear in multiple dataset
groups, such as Worm Autospread with ID 35b0 (marked
in pink) and Trojan Mira with ID 3a58 (marked in green),
consistently ranking among the largest identified resilient
fingerprints in most of the four groups. Additionally, Tro-
jan Spyware with ID 25ca (marked in orange) and Trojan
Spyware with ID 834c (marked in purple), appear across the
first/second and second/third groups.
Maliciousness Ground Truth. Before investigating the
variant evasive and invariant parts within the files of an
identified campaign, it is necessary to establish the ground
truth of maliciousness through other means, as traditional
hash fingerprinting methods have a low similarity detection
score. In this study, we leverage the vendors’ labels within
the collected groups’ dataset to establish this ground truth.
We determine the number of vendors that labeled each file as
malicious, 𝑥 , and construct a vector per resilient fingerprint,
𝑟 = 𝑥1, 𝑥2, ..., 𝑥𝑛 , where 𝑥1 represents file 1, 𝑥2 represents file
2, and so on. We then calculate the histogram distribution of
𝑟 . Figure 7 shows the maliciousness of ground truth labelling
from VirusTotal vendors to the top 18 identified resilient
fingerprints. Our findings confirm that all the files within
each resilient fingerprint are highly malicious, as more than
20 vendors have labelled them as malicious (refer to Figure 7
in Appendix B for details).

5.3 Reliable Invariant Executable Parts
Findings. After thoroughly analysing the files’ critical com-
ponents, we discover that the identified resilient fingerprints

Table 4: Top resilient fingerprints from the four groups.
Group 1

Intent ID Type Characteristics Files No Longevity File Hash
Fingerprint

Worm
Autospread 35b0 Win32.exe Spread through

removables like USB 27,091 1999-2022 3.7%

Trojan
Zombie 8a9e Win32.exe Command

Control for attacks 24,119 2011-2022 9.7%

Trojan
Spyware 25ca Win64.dll Stealing Banking

Credentials 10,295 2015-2022 0.4%

Trojan
Mira 3a58 Win32.dll Command Control

for attacks 3,596 2014-2022 2.6%

Trojan
Dropper fbc6 Win64.dll Install other Malware 917 2020-2022 4.9%

Group 2
Worm

Autospread 35b0 Win32.exe Spread through
removables like USB 34,045 1999-2022 7.4%

Trojan Ransomeware d66e Win32.exe Encrypt files. 31,747 2008-2022 77.7%
Trojan Spyware 834c Win64.dll Keylogger. 17,379 1992-2022 3.0%

Trojan Mira 3a58 Win32.dll Remote Command
Control 10,794 2014-2022 3.1%

Trojan Spyware 25ca Win64.dll Stealing banking
credentials. 2,070 2015-2022 5.2%

Group 3

Worm Autospread 35b0 Win32.exe Spread through
removables like USB 34,068 1992-2022 5.6%

Virus Fujaks 9dab Win32.exe Prevent security
processes from running. 20,844 1992-2022 3.0%

Trojan Spyware 834c Win64.dll Keylogger. 18,068 1992-2022 2.8%

Trojan Mira 3a58 Win32.dll Remote Command
Control 10,232 2014-2022 1.8%

Group 4 (Collected 9 months after)
Trojan Ransomeware 5a7b Win32.exe Encrypt Files 11,926 2008-2022 18.1%

Trojan Malware 6448 Win32.exe Remote Command
Control 8,842 1992-2022 37.3%

Worm
Autospread 35b0 Win32.exe Spread through

removables likeUSB 1,979 1992-2022 6.7%

Trojan Mira 3a58 Win32.dll Remote Command
Control 1,969 2003-2022 10.6%

utilize common executable section blocks. Specifically, we
identify three types of invariant sections, and named them
“Malicious”, “Standard”, and “Camouflage”. The “Malicious”
section is where the majority of malicious code is embedded,
characterized by high entropy (>5) and frequent obfuscation.
The “Standard” section appears to contain generic standard
operation code blocks that may be called by the “Malicious”
section and has normal entropy (≤ 5). The “Camouflage”
section is the most intriguing aspect we identified. It appears
to be a padding section with an entropy of 0 and a small raw
size (<4096 bytes), indicating the presence of automatically
generated continuous characters. These findings were preva-
lent across all four groups.

Results Insight 1. Table 5 provides a detailed examination
of the invariant sections for the resilient fingerprint “Worm
Autospread” (ID 35b0), which was observed across all four
groups. This resilient fingerprint consists of five sections,
each identified by a SecID, which is a shortened version of
the first and last two characters of their content hash. The
table also includes the entropy and count of each section
within the fingerprint files for each group, as well as our
analysis label. It is evident that these sections are present not
only within the resilient fingerprint for each group dataset,
but also across multiple groups. Out of the five sections,
we can see that this resilient fingerprint includes two likely
“Malicious”, two “Standard”, and one “Camouflage” sections.

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

Table 5: In-variant Sections. Zoom in to Worm Au-
tospread resilient fingerprint with ID 35b0.

SecID Entropy Count
Group 1

Count
Group 2

Count
Group 3

Count
Group 4 Label

d47e 0 27103 34045 34262 2179 Camouflage
31d3 7.89 15411 16158 17313 – Malicious
80b1 2.81 15411 16158 17313 986 Standard
40af 7.91 11692 17887 16949 1193 Malicious
3a56 2.79 11692 17887 16949 1193 Standard

Results Insight 2. Table 6 examines the invariant sections
of another resilient fingerprint, “Trojan Spyware” (ID 25ca),
which was observed twice across groups 1 and 2 of our
datasets. In addition to the patterns discussed in Insight 1
regarding the three common sections, this fingerprint reveals
that the malware authors also extensively utilize camouflage
sections. For instance, four of the ten sections are camou-
flage, characterized by an entropy of 0 and simple padding of
<4096 bytes. Additionally, the malware authors repeatedly
include the same camouflage section within the same mal-
ware sample. For instance, SecID “d47e” appeared 157,453
times across 10,295 files or around 12-15 copies per file. These
tactics, beyond altering the file hashes, are likely used also
to increase the size of the malicious files, making it more
challenging for the next stage of static and dynamic analysis.

Table 6: Invariant Sections. Zoom in to Trojan Spyware
resilient fingerprint with ID 25ca and have 10295 files.

SecID Entropy Count
Group 1

Count
Group 2 Label

6210 0 157453 33183 Camouflage
0822 0 83165 17294 Camouflage
459b 0 12326 2584 Camouflage
b66c 5.14 10295 2070 Malicious
a214 2.78 10295 2070 Standard
ca9d 4.04 10295 2070 Standard
bad4 0 10295 2070 Camouflage
0e5c 4.09 10295 2070 Standard
07aa 7.82 10290 2069 Malicious
21ae 6.67 10290 2069 Malicious

0 2000
(a) Virtual Size

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

10000001500000
(b) Virtual Address

0

10000

20000

30000

40000

50000

20 40
(c) Number of Sections

0

250

500

750

1000

1250

1500

Figure 5: Section Numbers, Virtual Size and Address
variant.

5.4 Variant Evasive Parts
Findings. Our analysis of resilient fingerprint files reveals
various tactics employed by malware authors to evade detec-
tion and hide their file hash fingerprints. These tactics focus

Figure 6: Same section content across 10,295 files with
variant section names.

on section numbers, virtual size, virtual address, and sec-
tion names. (1) Malware authors frequently use high section
numbers to inject camouflage sections and increase file size,
making analysis more challenging. (2) Manipulating virtual
size by utilizing uninitialized arrays in specific sections alters
the memory size footprint. (3) The virtual address, the loca-
tion in memory where the file is loaded, is also manipulated
by loading the same sections into random memory locations.
(4) Additionally, malware authors use variant section names
to conceal common sections with identical content. Subse-
quent presentation provides evidence and results supporting
these findings.
Results Insight 1. As shown in Figure 5. (c), the distribu-
tion of section numbers within the Trojan Spyware (ID 25ca)
resilient fingerprint, which comprises 10,295 files and over
300,000 sections, reveals significant variability. Despite the
presence of invariant section blocks, as previously discussed,
the number of sections per file varies considerably, ranging
from 10 to 50. A large proportion of these sections are attrib-
uted to camouflage sections (SecID 6210 and 0822, as shown
in Table 6), which are mostly empty sections.
Results Insight 2. As Figure 5. (a) and (b) illustrates, vir-
tual size is highly variable among resilient fingerprint files,
despite the presence of identical section content. This vari-
ability ranges from 0 to 3500. Similarly, the virtual address is
widely dispersed, ranging from 0.1e6 to 1.6e6. Additionally,
Figure 6 exhibits that the section names (with identical con-
tent) display high randomness, suggesting that they were
auto-generated as a camouflage tactic.

It is important to note that the degree of variability across
the variant parts we have discussed varies among finger-
prints. Some resilient fingerprints may exhibit a higher de-
gree of randomness in certain areas, such as section numbers,
virtual addresses, virtual sizes, or section names, while oth-
ers may exhibit less variability in these areas. To aid the

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

reviewers further, we have made all identified top resilient
fingerprints available in our repository1.

Answer RQ 2: Import libraries with lists of functionalities and
executable section blocks are reliable components for identifying
invariant parts of malware samples through resilient fingerprints.
Evasive methods used by malware include altering the number of
sections, virtual size, virtual address, section names, and occasion-
ally code size variations.

6 FINGERPRINT DETECTION
IMPROVEMENT

This section focuses on answering RQ3: How to improve
malware fingerprinting? To achieve this, we present two
approaches named “Top-Down” and “Bottom-Up”. The un-
derlying idea revolves around the structured nature of file
metadata, which forms a tree-like hierarchy from the highest
level (import libraries) to the lowest level (executable sec-
tion blocks), encompassing lists of functionalities. Exploiting
this structure, we aim to identify the resilient and invariant
path of similarities, starting from the top and progressing
towards the bottom. In the subsequent subsections, we delve
into both approaches, providing comprehensive descriptions
of the algorithms employed. Furthermore, we present the
results obtained from our investigations.

6.1 Top-Down Approach
To detect and evaluate potential resilient fingerprints, the
Top-down approach first clusters resilient fingerprints based
on 100% similarities in their import libraries and functionali-
ties. Next, we conduct a detailed analysis of the sections in
these resilient fingerprints, with a particular focus on identi-
fying any malicious or camouflage sections. Based on this
analysis, we create a comprehensive profile for each resilient
fingerprint, including detailed statistics at both the file and
section levels. By analyzing these statistics, we can deter-
mine the likelihood that a given file belongs to a resilient
fingerprint.
Algorithm 1 outlines the top-down process. It takes two

separate parameters, 𝑓 𝑒𝑒𝑑𝑠 and 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , and groups the
feeds by their import list similarity 𝑖𝑚𝑝ℎ𝑎𝑠ℎ. The groups
are then sorted in descending order based on their count,
allowing us to focus on the significant clusters first (steps
1-2). Next, we iterate through each cluster in 𝑆𝑜𝑟𝑡𝑖𝑚𝑝𝐿𝑖𝑠𝑡𝑠 ,
using each entry’s 𝑖𝑚𝑝ℎ𝑎𝑠ℎ to locate all relevant files from
𝑓 𝑒𝑒𝑑𝑠 . We then calculate file-level statistics, such as entropy
and hashes (steps 4-6). We also dive into 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 to retrieve
all the sections that belong to the resilient fingerprint, group
those sections using 𝑠𝑒𝑐𝐻𝑎𝑠ℎ, and sort them in descending
order based on count to prioritize significant sections (steps
1 https://github.com/anonymousConfer/malware_fingerprint

7-9). We then iterate through each cluster of sections within
𝑠𝑜𝑟𝑡𝑠𝑒𝑐𝐾𝑒𝑦𝑠 , using each entry’s 𝑠𝑒𝑐𝐾𝑒𝑦 to locate all rele-
vant sections before collecting all the statistics about that
common section (steps 12-13). For example, if we have ten
sections with similar keys, we collect the minimum and max-
imum entropy, and minimum and maximum chi-squared
distance (Chi2). We decide to focus on the top 10 sections
within each resilient fingerprint as a threshold. Finally, we
combine the collected 𝑓 𝑒𝑒𝑑𝑠𝐼𝑛𝑓 𝑜 and 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[] to create
𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡𝐹𝑝𝑟𝑖𝑛𝑡𝐼𝑛𝑓 𝑜 , which forms the basis of our decision-
making process.

Algorithm 1 Top-Down Approach
Input: feeds, sections ⊲ 𝑓 𝑒𝑒𝑑𝑠 : 𝑓1, 𝑓2 .., 𝑓𝑛 .𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 : 𝑠1, 𝑠2 .., 𝑠𝑛
Output: resilientFprintInfo ⊲ set of resilient fingerprints, each has related
meta-info

1: impLists = group feeds by imphash ⊲ imphash is unique identifier for import
list

2: SortimpLists = sort impLists by count in descending order
3: resilientFprintInfo = []
4: for imphash in SortimpLists do
5: resilientFingerprints[] = locate feeds by imphash
6: feedsInfo = calculate resilientFingerprints[] stats
7: RFprintSections = locate relevant sections of resilientFingerprints[]
8: secKeys = group RFprintSections by secHash ⊲ secHash is unique section

identifier
9: sortsecKeys = sort secKeys descendingly by count
10: secInfo = []
11: for secKey in sortsecKeys do
12: section[] = locate RFprintSections by secKey
13: sparams = calculate section[] stats
14: append sparams to secInfo
15: end for
16: append feedsInfo,section[],secInfo[] to resilientFprintInfo
17: end for

6.2 Bottom-Up Approach
This approach is going the other way around to start from
the bottom up by clustering all files that use common sec-
tions, including camouflage or malicious. This approach is
motivated by our analysis, where we find that common cam-
ouflage sections and malicious sections could be found in an-
other resilient fingerprint that has different import list libraries
when we follow the Top-Bottom approach. We attribute that
to Malware authors slightly manipulating the import list li-
braries to avoid being detected or using the same executable
sections for different intent. Therefore, starting from the
bottom (sections) up, we can capture resilient fingerprints
robust to slight import variations. Similar to the previous
approach, a profile is built to determine the maliciousness of
the fingerprints.

Algorithm 2 outlines the bottom-up process. It takes two
similar separate parameters, 𝑓 𝑒𝑒𝑑𝑠 and 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 of the entire
group (1M feeds and their sections). We begin by diving into
𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 to retrieve all common sections, group those sec-
tions using 𝑠𝑒𝑐𝐻𝑎𝑠ℎ, and sort them in descending order based
on count to prioritize significant sections (steps 1-2). We then

https://github.com/anonymousConfer/malware_fingerprint

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

iterate through each cluster of sections within 𝑠𝑜𝑟𝑡𝑠𝑒𝑐𝐾𝑒𝑦𝑠 ,
using each entry’s 𝑠𝑒𝑐𝐾𝑒𝑦 to locate all relevant sections
(steps 4-5). Next, we use collected 𝑅𝐹𝑝𝑟𝑖𝑛𝑡𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 [] to go
up to the file level and retrieve all relevant file-level feeds
(steps 6). We observe here that we might encounter redun-
dant file-level feeds as multiple sections might belong to
the same file and cause double dipping counting. Hence, we
introduce step 7 as a filtering condition to eliminate this
redundancy using 𝑓 𝑒𝑒𝑑𝐼𝐷 before collecting all the statistics
about that common section (steps 8-9).

Algorithm 2 Bottom-Up Approach
Input: feeds, sections ⊲ 𝑓 𝑒𝑒𝑑𝑠 : 𝑓1, 𝑓2 .., 𝑓𝑛 .𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 : 𝑠1, 𝑠2 .., 𝑠𝑛
Output: resilientFprintInfo ⊲ set of resilient fingerprints, each has related
meta-info

1: secKeys = group sections by secHash ⊲ secHash is unique identifier
2: sortsecKeys = sort secKeys descendingly by count
3: resilientFprintInfo = []
4: for secKey in sortsecKeys do
5: RFprintSections[] = locate sections by secKey
6: resilientFprint[] = locate feeds by 𝑅𝐹𝑝𝑟𝑖𝑛𝑡𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 []
7: resilientFprint[] = drop duplicates 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡𝐹𝑝𝑟𝑖𝑛𝑡 [] by feedsID
8: sparams = calculate RFprintSections[]stats
9: fparams = calculate resilientFprint[]stats
10: append sparams,fparams to resilientFprintInfo
11: end for

6.3 Results
Overview and settings. As detailed in Algorithm 1 and 2,
we obtain all the required statistical heuristics from both
approaches. In the results section, we explore various com-
binations across the four groups of our datasets to examine
the potential efficacy. Those combinations include Import
List (IL), Redundant Sections (RS), Camouflage Sections (CS),
and Malicious Sections (MS) as they have been defined in
Invariant Parts (Section 5.3). We use the vendor’s labels as
ground truth to evaluate the maliciousness of the identi-
fied fingerprints. As stated early, we select a conservative
threshold (𝑡 >= 4) as an indicator to consider a given binary
as malicious. We also refer to the number of files within
a resilient fingerprint as redundancy. Lastly, the accuracy
column denotes the effectiveness of our approach in identi-
fying files and assessing their probability of being associated
with a resilient fingerprint, rather than conducting binary
classification between benign and malware.

We identify three types of resilient fingerprints. The first
is fully malicious, meaning four or more vendors flag all the
identified files within that resilient fingerprint as malicious.
The second type is resilient fingerprints where all the files
are flagged by less than four vendors, and we mark them as
False Positive (FP). The third and most interesting resilient
fingerprints type is partial malicious, meaning some of the
files are highly flagged by the vendors, but others are not
while they share common import lists and camouflage or

malicious section blocks. We combine those resilient finger-
prints toward True Positive (TP) accuracy. The results below
will provide more details and a specific focus on the FP and
TP. Note that all thresholding has been derived from group
1 only. Therefore, we use groups 2, 3, and 4 to examine the
generalisability of our findings.

Top-Down Results.We analyze the Top-Down approach
using five combinations across four groups. The results in
Table 7 are as follows. (1) IL and RS combination: Identify
approximately 560 fingerprints with a high FP rate (around
6.8%) and a TP rate of about 93.1%. Consistent results are
observed across all four groups, with slightly higher FP (9%)
and lower TP (90%). (2) IL and CS combination: Reduce the
number of identified fingerprints by more than half, result-
ing in improved FP rates (between 1.3% and 2.8%) and TP
rates (between 97.1% and 98.6%). Identify around 25% of 1
million files within each group. (3) IL and MS combination:
Increase the total number of identified resilient fingerprints
to two-thirds. Reasonable FP rates (between 2.2% and 3.9%)
and TP rates (between 96% and 97.7%) are achieved, identify-
ing around 323K-434K of all 1 million files within each group.
(4) IL, CS, and MS combination: Among all combinations,
it has one of the lowest numbers of identified resilient fin-
gerprints (between 195-347). However, it provides decent FP
rates (between 1.3% and 2.8%) and TP rates (between 97.1%
and 98.6%), identifying between 213K-227K of all files within
each group. This combination is considered too strict. (5)
Based on these observations, the fifth combination of IL and
either CS or MS proves to be the most effective. It identifies
the highest number of resilient fingerprints (between 345
and 1025) with FP rates (between 2.2% and 3.9%) and TP
rates (between 96% and 97.7%). It identifies slightly more
files (between 324K-339K), representing approximately 33%
of all 1 million files within each group. Thus, the presence
of IL, combined with either CS or MS, is deemed sufficient
to connect a file to a resilient fingerprint.
Bottom-Up Results. Table 8 presents the results of our
bottom-up approach using four combinations across the four
groups. (1) Connection based on redundant sections: This
method identifies the most resilient fingerprints (511-1177)
with a TP rate of 93%-96%, but has a relatively high FP rate
(3%-6%). It captures about 650K files (65%) from the four
groups. (2) Connection based on camouflage sections: While
identifying fewer fingerprints (26-52), this approach captures
around 450K files (45%) with a very low FP rate (0.016%) and
an impressive TP rate of 99.9%. (3) Connection based on ma-
licious sections: This method identifies 232-273 fingerprints,
with a TP rate of 95%, but has a higher FP rate (4%-5%). It
captures the fewest files (100K-175K or 10%-17.5%) out of
1 million. (4) Combined approach: Combining CS and MC

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

Table 7: Top-Down Approach resilient Fingerprinting.

Top-Down Fingerprint (F<4) (F<4,F>=4) (F>=4) (TP)
Num Acc.(%) Redundancy Num Acc.(%) Redundancy

Group 1
ILRS 560 51 6.8 40,034 158 351 93.1 544,613
ILCS 222 11 1.3 3,070 67 144 98.6 224,803
ILMS 394 32 2.2 7,572 103 261 97.7 335,062

ILCSMS 219 11 1.3 3,070 66 142 98.6 223,513
ILCS(or)MS 345 22 2.2 7,572 95 231 97.7 339,278

Group 2
ILRS 478 56 9.0 53,682 148 274 90.9 540,439
ILCS 197 13 2.0 4,407 67 117 97.9 213,656
ILMS 344 39 2.9 9,993 97 208 97.0 323,728

ILCSMS 195 13 2.0 4,407 66 116 97.9 213,021
ILCS(or)MS 346 39 2.9 9,993 98 209 97.0 324,363

Group 3
ILRS 494 62 9.3 56,581 144 288 90.6 548,525
ILCS 196 17 2.8 6,499 61 118 97.1 218,264
ILMS 355 43 3.4 11,753 93 219 96.5 329,789

ILCSMS 195 17 2.8 6,499 61 117 97.1 217,782
ILCS(or)MS 356 43 3.4 11,753 93 220 96.6 330,271

Group 4 (Collected 9 months after)
ILRS 1419 88 4.3 29,309 164 1167 95.6 652,168
ILCS 351 15 2.7 6,403 15 258 97.2 229,597
ILMS 1021 60 3.9 17,678 127 834 96.0 434,068

ILCSMS 347 14 2.6 6,236 78 255 97.3 227,134
ILCS(or)MS 1025 61 3.9 17,845 127 837 96.0 436,531

Table 8: Bottom-Up Approach resilient Fingerprinting.

Bottom-Up Fingerprint (F<4) (F<4,F>=4) (F>=4) (TP)
Num Acc. (%) Redundancy Num Acc. (%) Redundancy

Group 1
RS 603 141 5.1 34,640 187 278 94.9 656,219
CS 26 4 0.1 7 21 1 99.9 457,365
MC 273 39 4.1 4,038 67 167 95.9 105,719

CS(or)MC 299 43 0.8 4,448 88 168 99.2 563,084
Group 2

RS 511 151 6.1 43,071 164 196 93.9 665,236
CS 27 1 0.1 2 26 0 100 467,425
MS 232 47 5.1 6,987 54 131 94.9 132,010

CS(or)MS 259 48 1.2 6,987 80 131 98.8 599,435
Group 3

RS 534 139 6.3 42,984 163 226 93.7 648,942
CS 32 3 0.1 217 27 1 99.9 462,836
MS 248 40 4.5 5,511 54 153 95.5 118,403

CS(or)MS 280 43 0.9 5,728 81 154 99.1 581,239
Group 4 (Collected 9 months after)

RS 1,177 146 3.3 25,803 196 838 96.7 758,426
CS 52 4 0.1 73 39 11 99.9 451,284
MS 607 43 4.2 7,575 60 505 95.8 173,785

CS(or)MS 659 47 1.3 7,648 99 516 98.7 625,069

yields the best results, identifying 280-659 resilient finger-
prints with a low FP rate (1%) and a TP rate of >98.7%. It
captures 563K-625K files (50%-60%) across all 1 million files
in each group.
Comparison with Traditional Fingerprinting. We com-
pare our best results from the Top-Down and Bottom-Up
approaches, highlighted in green, against two traditional fin-
gerprinting methods: SHA256 and TLSH. For the Top-Down
approach, we select the best-performing combination of IL
with either CS or MS, while for the Bottom-Up approach,
we choose the best CS or MC combinations. Among crypto-
graphic hashes (e.g., MD5, SHA1, SHA256), we select SHA256
for its widespread use. All three cryptographic hashes per-
form similarly across the groups. For fuzzy hashes, we select
TLSH due to its speed and scalability, which have led to
its adoption by major platforms like VirusTotal, Malware
Bazaar, MISP, and STIX [39].

Table 9: Comparison with Tradition Fingerprinting.

Technique
Group 1
1,061,151

Group 2
1,061,151

Group 3
1,061,151

Group 4
1,061,151

of files Acc. # of files Acc. # of files Acc. # of files Acc.
SHA256 172,102 16.2 184,592 17.4 169,891 16.0 195,655 18.4
TLSH 195,028 18.4 210,027 19.8 189,493 17.9 219,304 20.7

Top-Down 339,278 31.9 324,363 30.5 330,271 31.1 436,365 41.1
Bottom-Up 563,084 53.1 599,435 56.4 581,239 54.7 625,069 58.9

Table 9 shows that SHA256 had the lowest accuracy (16%-
18.4%) in detecting file similarities across the four groups,
calculated based on hash redundancies. TLSH performed
slightly better, with accuracy ranging from 17% to 20.7%. In
contrast, our Top-Down and Bottom-Up approaches outper-
form both traditional methods. The Top-Down approach,
using Import Lists, camouflage sections, and malicious sec-
tions, achieves 30%-41.9% accuracy, while the Bottom-Up
approach achieves the best performance with 53%-58%. Addi-
tionally, our approaches maintain low FP rates, with the Top-
Down approach at 2.2%-3.9% and the Bottom-Up approach at
around 1%, outperforming traditional fingerprinting in both
accuracy and false positives.

Answer RQ 3: We propose two novel mechanisms, the Top-
Down and Bottom-Up approaches, to enhance malware finger-
printing. These methods consistently perform well across four
datasets, successfully identifying 30% to 58% of reported suspicious
files. This represents a significant improvement, up to tripling the
identification rate of traditional fingerprinting mechanisms.

7 DISCUSSION AND LIMITATIONS
Top-Down vs. Bottom-Up Approaches. After conduct-
ing systematic evaluations and answering Q1 and Q2, we
identified several invariant parts within files that could im-
prove traditional malware fingerprinting techniques, includ-
ing cryptographic hash-based and fuzzy hash-based meth-
ods. To enhance the detection of similar malware files with
common tactics such as import lists, camouflage sections,
and malicious sections, we developed two novel techniques:
Top-Down and Bottom-Up. While both methods proved ef-
fective, we noted some trade-offs. Bottom-Up outperformed
Top-Down in terms of detection accuracy, but it tended to
capture partially malicious resilient fingerprints with more
files, whereas Top-Down leaned toward capturing fully mali-
cious resilient fingerprints. We argue that Top-Down may be
the better option when a security analyst aims to capture the
resilient fingerprints’ intent. This approach begins with com-
mon Import libraries with a list of functionalities and then
delves into the camouflage and malicious sections, providing
a clear view of the intent. In contrast, Bottom-Up may be
less effective at identifying the resilient fingerprints’ intent
but more suitable for capturing a larger number of malware
files that do not necessarily share the same import libraries

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

but use camouflage and malicious executable sections tactics.

False Positive Fingerprints.Ourwork intentionally avoided
using predictive models like neural networks and instead
relied on statistical heuristics to identify connected malware
files in the early stages of triaging. While our methods do
have a false positive rate, it is very low. For instance, the
Top-Down approach has a 2-3.9% false positive rate, whereas
the Bottom-Up approach has an even lower false positive
rate of 0.7-1.2%. It’s worth noting that not all the files within
false positive deep fingerprints have zero malicious vendor
labels. Many of them have been labeled malicious by 1-3
vendors, but our threshold for counting a file as malicious is
a minimum of 4 vendor labels, pushing these files into the
false positive cluster. Additionally, there is a possibility that
some of these files are highly malicious, but vendors did not
detect them when we collected the dataset. Unfortunately,
we were unable to confirm this observation.
Evaluation of Good Executables. Utilizing benign exe-
cutables sourced externally to obtain VirusTotal reports pre-
sented a significant challenge, primarily stemming from IP
and legal concerns rather than technical obstacles. Given
the focus of our study on Windows PE files, initiating the
submission of benign Windows executables to VirusTotal
as suspicious for metadata generation would raise ethical
issues. However, our collection of samples from VirusTotal
already includes a substantial percentage of benign files. As
indicated in Table 10, approximately 25% to 35% of samples
in each group exhibit benign characteristics with zero mali-
cious flags. We believe this proportion is deemed satisfactory
for our research objectives.
Packing and Generating Reports Overhead. We empha-
size, in Figure 1, that the VirusTotal platform includes pack-
ing type details (e.g., UPX) within the metadata parameters.
To this end, VirusTotal routinely unpacks these samples be-
fore generating metadata. This deliberate omission from
our discussion is rooted in the scope of our work. In terms
of generation overhead, our study leveraged VirusTotal for
metadata generation. Every minute, they supplied metadata
for approximately 1,500 received files. However, we selec-
tively utilized detailed metadata, focusing on quick static
analysis of sections and import lists as full entities. Typically,
these processes demand minimal time, often measured in
seconds.
Limitations and Future Directions. Our work has two
main limitations. Firstly, although our approach incorpo-
rates more flexible fingerprinting mechanisms to analyze
file-invariant parts, we still rely on the hash of these parts as
a conservative measure. However, an adaptive attacker could
potentially slightly alter these parts, necessitating the use of
similarity techniques like cosine similarity with an appro-
priate threshold instead of content hashing. Secondly, our

Top-Down approach heavily depends on import libraries’ list
of functionalities and content hash for clustering. However,
a small percentage of reports collected from VirusTotal lack
this content, possibly due to obfuscated import libraries. To
address this, we could utilize API deobfuscation models such
as [40] to rebuild the Import libraries list before calculating
their content hash, mitigating this limitation.

8 RELATEDWORK
The concept of “malware fingerprinting” encompasses two
distinct approaches. Firstly, it involves utilizing a defense
mechanism that calculates a hash value from suspicious files
and shares it publicly to identify similar files at an early stage,
which is the focus of our current work. Alternatively, it may
entail observing the behavior of malware during execution
to detect its presence. The second approach involves an eva-
sion mechanism whereby malware attempts to detect signs
of analysis environments or debuggers, as detailed in a study
by Afianian et al. [41].

Traditional Fingerprinting. Stream hashing is a key tech-
nique in malware and threat intelligence, serving as the ini-
tial line of defense against cyber threats. It is widely utilized
and shared among security teams as checksums or unique
identifiers for triage purposes, with platforms like VirusTotal,
MalwareBazaar, MISP, and STIX [10] being popular for this
purpose. Security analysts use these identifiers (hashes) to la-
bel and share malware across teams. Two main mechanisms
generate these identifiers: cryptographic based hashing and
fuzzy-based hashing. Cryptographic hashing, such as MD5,
SHA-1, and SHA-256, uses cryptographic diffusion to hide
the relationship between the original entity and the hash,
but even minor changes in the entity result in a completely
different hash [11].
To address this limitation, fuzzy hashing offers a more

flexible approach by tolerating minor changes between files,
making it useful for capturing some malware evasion tech-
niques. Examples include Nilsimsa, TLSH, SSDEEP, and SD-
HASH, with TLSH being the most widely adopted due to its
speed and scalability. However, our findings indicate that
while fuzzy hashes outperform cryptographic hashes, their
effectiveness remains low (<20%) at the file level, underscor-
ing the need for more adaptable fingerprinting strategies to
identify diverse file groups.
Dynamic Fingerprinting. Another work stream focuses
on fingerprinting malware based on its execution behavior.
Studies by Willems et al. [42] and Rossow et al. [43] found
that executing malware for a short period accurately identi-
fies its fingerprint and malicious intent. Kilgallon et al. [44]
proposed a systematic mechanism for predicting the time
required for sufficient malicious behavior. Küchler et al. [45]

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

conducted a study on malware behavior in sandboxes and
developed a machine learning-based detection method. They
find that multiple sandbox runs may be necessary for reliable
behavior fingerprinting. However, this approach may not be
suitable for the initial triaging of thousands of suspicious
files.
Systematic Studies. Several recent large-scale studies have
examined different aspects of malware evasion. Barr-Smith
et al. [12] focused on the Living off the land technique and
found detection gaps among the top 10 AntiVirus products.
Alrawi et al. [13] compared the lifecycle of IoT malware with
traditional desktop-targeting malware and highlighted differ-
ences in infection vectors and command and control commu-
nication. Cozzi et al. [15] studied Linux-targeting malware
and observed similar tactics to Windows malware. Duan [46]
conducted a study on Android packers using whole-system
emulation. Wong et al. [16] proposed a malware analysis
taxonomy and recommended guidelines for developers.
However, to the best of our knowledge, no large-scale

systematic study has explored the limitations of traditional
malware fingerprinting for detection and the need for more
adaptable mechanisms to identify mutated files with com-
mon intent, which motivated the current work.

9 CONCLUSION
This paper addresses the gap in understanding how malware
authors bypass traditional file-level fingerprinting and pro-
poses novel approaches to enhance it. We conducted a large-
scale empirical analysis of Windows PE files from VirusTotal,
identifying invariant and evasive variant parts. Our two pro-
posed approaches, Top-Down and Bottom-Up, cluster files
using resilient fingerprinting strategies based on similarities
in their Import Libraries and sections. The results show a
potential improvement of over 50% in detecting similar mal-
ware files with variations compared to traditional methods.
These findings underscore the need to update malware de-
tection fingerprinting methods to counter evolving evasion
techniques.

REFERENCES
[1] Hyrum S Anderson and Phil Roth. Ember: an open dataset for

training static pe malware machine learning models. arXiv preprint
arXiv:1804.04637, 2018.

[2] Evan Downing, Yisroel Mirsky, Kyuhong Park, and Wenke Lee. Deep-
reflect: Discovering malicious functionality through binary recon-
struction. In USENIX Security Symposium, pages 3469–3486, 2021.

[3] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano
De Cristofaro, Gordon Ross, and Gianluca Stringhini. Mamadroid:
Detecting android malware by building markov chains of behavioral
models. Proceedings of 24th Network and Distributed System Security
Symposium (NDSS), 2017.

[4] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christo-
pher Kruegel, and Giovanni Vigna. Neurlux: dynamic malware anal-
ysis without feature engineering. In Proceedings of the 35th Annual

Computer Security Applications Conference, pages 444–455, 2019.
[5] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan

Zou, Junghwan Rhee, Zhengzhang Chen, Wei Cheng, Carl A Gunter,
et al. You are what you do: Hunting stealthy malware via data prove-
nance analysis. In NDSS, 2020.

[6] IDAPro. The interactive disassembler pro. https://hex-rays.com/ida-
pro/, 2023.

[7] Michael Sikorski and Andrew Honig. Practical malware analysis: the
hands-on guide to dissecting malicious software. no starch press, 2012.

[8] Jonathan Oliver and Josiah Hagen. Designing the elements of a fuzzy
hashing scheme. In 2021 IEEE 19th International Conference on Embed-
ded and Ubiquitous Computing (EUC), pages 1–6. IEEE, 2021.

[9] Virustotal. https://www.virustotal.com/, 2023.
[10] Tlsh - a locality sensitive hash. https://tlsh.org/, 2021.
[11] Andrea Lelli Ramin Nafisi. Goldmax, goldfinder, and sibot: Analyzing

nobelium’s layered persistence. https://www.microsoft.com/en-
us/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-
nobelium-malware/, 2021.

[12] Frederick Barr-Smith, Xabier Ugarte-Pedrero, Mariano Graziano, Ric-
cardo Spolaor, and Ivan Martinovic. Survivalism: Systematic analysis
of windows malware living-off-the-land. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1557–1574. IEEE, 2021.

[13] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan Court, Kevin Z
Snow, Fabian Monrose, and Manos Antonakakis. The circle of life:
A large-scale study of the iot malware lifecycle. In USENIX Security
Symposium, pages 3505–3522, 2021.

[14] Mingxuan Yao, Jonathan Fuller, Ranjita Pai Kasturi, Saumya Agarwal,
Amit Kumar Sikder, and Brendan Saltaformaggio. Hiding in plain
sight: an empirical study of web application abuse in malware. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 6115–6132,
2023.

[15] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding linux malware. In 2018 IEEE symposium on
security and privacy (SP), pages 161–175. IEEE, 2018.

[16] Miuyin YongWong, Matthew Landen, Manos Antonakakis, Douglas M
Blough, Elissa M Redmiles, and Mustaque Ahamad. An inside look
into the practice of malware analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
3053–3069, 2021.

[17] Bushra Sabir, M Ali Babar, Raj Gaire, and Alsharif Abuadbba. Reli-
ability and robustness analysis of machine learning based phishing
url detectors. IEEE Transactions on Dependable and Secure Computing,
2022.

[18] Mariya Shmalko, Alsharif Abuadbba, Raj Gaire, Tingmin Wu, Hye-
Young Paik, and Surya Nepal. Profiler: Distributed model to detect
phishing. In 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), pages 1336–1337. IEEE, 2022.

[19] Zahra Mousavi, Chadni Islam, Kristen Moore, Alsharif Abuadbba, and
M Ali Babar. An investigation into misuse of java security apis by
large language models. In Proceedings of the 19th ACM Asia Conference
on Computer and Communications Security, pages 1299–1315, 2024.

[20] Alsharif Abuadbba, Shuo Wang, Mahathir Almashor, Muhammed Ejaz
Ahmed, Raj Gaire, Seyit Camtepe, and Surya Nepal. Towards
web phishing detection limitations and mitigation. arXiv preprint
arXiv:2204.00985, 2022.

[21] Keelan Evans, Alsharif Abuadbba, Tingmin Wu, Kristen Moore, Mo-
hiuddin Ahmed, Ganna Pogrebna, Surya Nepal, and Mike Johnstone.
Raider: Reinforcement-aided spear phishing detector. In International
Conference on Network and System Security, pages 23–50. Springer,
2022.

[22] Virustotal: Upload and scan a file api. https://developers.virustotal.
com/reference/, 2023.

https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://www.virustotal.com/
https://tlsh.org/
https://www.microsoft.com/en-us/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://www.microsoft.com/en-us/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://www.microsoft.com/en-us/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://developers.virustotal.com/reference/
https://developers.virustotal.com/reference/

Alsharif Abuadbba, Sean Lamont, Ejaz Ahmed, Cody Christopher, Muhammad Ikram, Uday Tupakula, Daniel Coscia, Mohamed Ali Kaafar, and Surya Nepal

[23] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christopher
Kruegel, Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee, and Marco
Mellia. Nazca: detecting malware distribution in large-scale networks.
In NDSS, volume 14, pages 23–26, 2014.

[24] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel
Egele. Paybreak: Defense against cryptographic ransomware. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 599–611, 2017.

[25] Platon Kotzias, Leyla Bilge, and Juan Caballero. Measuring {PUP}
prevalence and {PUP} distribution through {Pay-Per-Install} services.
In 25th USENIX Security Symposium (USENIX Security 16), pages 739–
756, 2016.

[26] Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu Kub-
ota, and Akira Yamada. Predicting impending exposure to malicious
content from user behavior. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 1487–1501,
2018.

[27] Armin Sarabi and Mingyan Liu. Characterizing the internet host
population using deep learning: A universal and lightweight numerical
embedding. In Proceedings of the Internet Measurement Conference
2018, pages 133–146, 2018.

[28] Edward J Schwartz, Cory F Cohen, Michael Duggan, Jeffrey Gen-
nari, Jeffrey S Havrilla, and Charles Hines. Using logic programming
to recover c++ classes and methods from compiled executables. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 426–441, 2018.

[29] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean-Michel Picod,
Cait Phillips, Marc-André Decoste, Chris Sharp, Fabio Tirelo, Ali
Tofigh, Marc-Antoine Courteau, et al. Investigating commercial {Pay-
Per-Install} and the distribution of unwanted software. In 25th USENIX
Security Symposium (USENIX Security 16), pages 721–739, 2016.

[30] Michelle Y Wong and David Lie. Tackling runtime-based obfuscation
in android with {TIRO}. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1247–1262, 2018.

[31] Liang Wang, Antonio Nappa, Juan Caballero, Thomas Ristenpart, and
Aditya Akella. Whowas: A platform for measuring web deployments
on iaas clouds. In Proceedings of the 2014 Conference on Internet Mea-
surement Conference, pages 101–114, 2014.

[32] Ke Tian, Steve TK Jan, Hang Hu, Danfeng Yao, and GangWang. Needle
in a haystack: Tracking down elite phishing domains in the wild. In
Proceedings of the Internet Measurement Conference 2018, pages 429–
442, 2018.

[33] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar,
Noha Loizon, and Roya Ensafi. The chain of implicit trust: An analysis
of the web third-party resources loading. In The World Wide Web
Conference, pages 2851–2857, 2019.

[34] Benjamin Zi Hao Zhao, Muhammad Ikram, Hassan Jameel Asghar, Mo-
hamed Ali Kaafar, Abdelberi Chaabane, and Kanchana Thilakarathna.

A decade of mal-activity reporting: A retrospective analysis of inter-
net malicious activity blacklists. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, pages 193–205,
2019.

[35] Zhenquan Cai and Roland HC Yap. Inferring the detection logic and
evaluating the effectiveness of android anti-virus apps. In Proceedings
of the Sixth ACM Conference on Data and Application Security and
Privacy, pages 172–182, 2016.

[36] David Korczynski and Heng Yin. Capturing malware propagations
with code injections and code-reuse attacks. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 1691–1708, 2017.

[37] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai
Song, and GangWang. Measuring and modeling the label dynamics of
online {Anti-Malware} engines. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2361–2378, 2020.

[38] Linhai Song, Heqing Huang, Wu Zhou, Wenfei Wu, and Yiying Zhang.
Learning from big malwares. In Proceedings of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems, pages 1–8, 2016.

[39] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh–a locality
sensitive hash. In 2013 Fourth Cybercrime and Trustworthy Computing
Workshop, pages 7–13. IEEE, 2013.

[40] Binlin Cheng, Ming Jiang, Erika Leal, Haotian Zhang, Jianming Fu,
Guojun Peng, and Jean-Yves Marion. Obfuscation-resilient executable
payload extraction from packed malware. In 30th Usenix Security
Sympoisum, 2021.

[41] Amir Afianian, Salman Niksefat, Babak Sadeghiyan, and David Bap-
tiste. Malware dynamic analysis evasion techniques: A survey. ACM
Computing Surveys (CSUR), 52(6):1–28, 2019.

[42] CarstenWillems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security & Privacy,
5(2):32–39, 2007.

[43] Christian Rossow, Christian J Dietrich, Herbert Bos, Lorenzo Cavallaro,
Maarten Van Steen, Felix C Freiling, and Norbert Pohlmann. Sandnet:
Network traffic analysis of malicious software. In Proceedings of the
First Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security, pages 78–88, 2011.

[44] Sean Kilgallon, Leonardo De La Rosa, and John Cavazos. Improving
the effectiveness and efficiency of dynamic malware analysis with
machine learning. In 2017 Resilience Week (RWS), pages 30–36. IEEE,
2017.

[45] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and
Davide Balzarotti. Does every second count? time-based evolution of
malware behavior in sandboxes. In NDSS, 2021.

[46] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui
Pan, Tongxin Li, Xueqiang Wang, and XiaoFeng Wang. Things you
may not know about android (un) packers: A systematic study based
on whole-system emulation. In NDSS, 2018.

Enhancing Malware Fingerprinting through Analysis of Evasive Techniques

Table 10: VirusTotal vendors malicious labels. When
0,1,2 or 3 vendors flag as malicious, we consider as
within the benign boundaries.

Dataset Files Malicous Flags Total0 1 2 3

Group1 349,635
(32.9%)

50,737
(4.8%)

21,265
(2.0%)

12,679
(1.2%)

434,316
(40.9%)

Group2 344,259
(32.4%)

59,838
(5.6%)

29,448
(2.8%)

16,871
(1.6%)

450,416
(42.4%)

Group3 376,198
(35.5%)

52,207
(4.9%)

21,169
(2.0%)

11,550
(1.1%)

461,124
(43.5%)

Group4 272,897
(25.7%)

60,702
(5.7%)

23,549
(2.2%)

11,597
(1.1%)

368,745
(34.5%)

A VIRUSTOTAL VENDORS MALICIOUS
LABELS

B GROUND TRUTH OF TOP 18
IDENTIFIED RESILIENT FINGERPRINTS

Figure 7 shows the maliciousness of ground truth labelling
from VirusTotal vendors to the top 18 identified resilient
fingerprints. It is clear from the x-axis that all the files within
each resilient fingerprint are highly malicious, as they have
been labelled as malicious by more than 20 vendors.

40 60
Worm Autospread (35b0)

0

2500

5000

7500

Fr
eq

ue
nc

y

25 50
Trojan Zombie (8a9e)
0

2500

5000

7500

20 40
Trojan Spy (25ca)

0

2000

4000

40 60
Trojan Mira (3a58)

0

500

1000

30 40 50
Trojan Dropper (fbc6)
0

100

200

300

(a) Group 1

40 60
Worm Autospread (35b0)

0

5000

10000

Fr
eq

ue
nc

y

25 50
Trojan Ransom (d66e)

0

5000

10000

25 50
Trojan Spy (834c)
0

2000

4000

6000

30 40 50
Trojan Mira (3a58)
0

2000

4000

30 40 50
Trojan Spy (25ca)
0

200

400

600

(b) Group 2

20 40 60
Worm Autospread (35b0)
0

5000

10000

Fr
eq

ue
nc

y

40 60
Virus Fujaks (9dab)

0

2500

5000

7500

20 40 60
Trojan Spy (834c)

0

2000

4000

6000

20 40 60
Trojan Mira (3a58)

0

2000

4000

(c) Group 3

40 60
Worm Autospread (35b0)
0

1000

2000

3000

Fr
eq

ue
nc

y

0 25 50
Virus Fujaks (9dab)

0

500

1000

1500

40 60
Trojan Spy (834c)

0

200

400

40 60
Trojan Mira (3a58)

0

200

400

(d) Group 4

Figure 7: Ground Truth for the extracted campaigns
from Groups 1, 2, 3 and 4.

C UNRELIABLE INVARIANT
NON-EXECUTABLE PARTS

Findings. Following a comprehensive investigation, we have
found that several of the identified resilient fingerprints clus-
ters are based on the imported libraries and have high simi-
larity in the non-executable resources, such as images and
logos. However, unlike the section code blocks, the presence
of resource-based clusters does not necessarily indicate ma-
licious intent. This is because these resources, like Microsoft
logos, may be used by both benign and malware samples.

Results Insight. Figure 8 illustrates the distribution of ma-
liciousness across two noteworthy identified resilient fin-
gerprints based on the import list and common resources,
consisting of 41,578 and 2,094 files, respectively. The first re-
silient fingerprint demonstrates a suspicious trend, as some
of its files are highly malicious while others are considered
benign. In contrast, the second resilient fingerprint is pri-
marily labeled as benign. These findings suggest that using
resources as a key similarity tactic may not be a reliable
mechanism for identifying resilient fingerprints.

0 20 40 60
VT Malicious Labels

0

2500

5000

7500

10000

12500

Fr
eq

ue
nc

y

0 20 40
VT Malicious Labels

0

500

1000

1500

2000

Figure 8: Ground truth for two extracted fingerprints
based on the import list high level and resources as low
level.

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Collection
	3.2 Data Characteristics
	3.3 Systematic Process

	4 Prevalence of File Variation
	4.1 Overview
	4.2 Import Libraries with List of Functions
	4.3 Sections of PE Files - Executable Code
	4.4 Resources of PE Files – non-Executables
	4.5 Results

	5 Malware Variation Evasive Methods
	5.1 Resilient Fingerprints Definition
	5.2 Resilient Fingerprints Qualitative Analysis
	5.3 Reliable Invariant Executable Parts
	5.4 Variant Evasive Parts

	6 Fingerprint detection Improvement
	6.1 Top-Down Approach
	6.2 Bottom-Up Approach
	6.3 Results

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion
	References
	A VirusTotal vendors malicious labels
	B Ground Truth of top 18 identified Resilient fingerprints
	C Unreliable Invariant non-Executable Parts

