
ar
X

iv
:1

70
3.

01
35

8v
1

 [
cs

.A
I]

 3
 M

ar
 2

01
7

Generalised Discount Functions

applied to a Monte-Carlo AIµ Implementation

Sean Lamont∗1, John Aslanides†1, Jan Leike‡2, and Marcus Hutter§1

1Research School of Computer Science, Australian National University
2Google Deepmind, London

2Future of Humanity Institute, University of Oxford

Abstract

In recent years, work has been done to develop the theory of General Reinforcement
Learning (GRL). However, there are few examples demonstrating the known results regard-
ing generalised discounting. We have added to the GRL simulation platform AIXIjs the
functionality to assign an agent arbitrary discount functions, and an environment which
can be used to determine the effect of discounting on an agent’s policy. Using this, we
investigate how geometric, hyperbolic and power discounting affect an informed agent in a
simple MDP. We experimentally reproduce a number of theoretical results, and discuss some
related subtleties. It was found that the agent’s behaviour followed what is expected the-
oretically, assuming appropriate parameters were chosen for the Monte-Carlo Tree Search
(MCTS) planning algorithm.

Keywords— Reinforcement Learning, Discount Function, Time Consistency, Monte Carlo

1 Introduction

Reinforcement learning (RL) is a branch of artificial intelligence which is focused on designing
and implementing agents that learn how to achieve a task through rewards. Most RL methods
focus on one specialised area, for example the Alpha-Go program from Google Deepmind which is
targeted towards the board game Go [12]. General Reinforcement Learning (GRL) is concerned
with the design of agents which are effective in a wide range of environments. RL agents use
a discount function when choosing their future actions, which controls how heavily they weight
future rewards. Several theoretical results have been proven for arbitrary discount functions
relating to GRL agents [8].

We present some contributions to the platform AIXIjs1 [1][2], which enables the simulation
of GRL agents for gridworld problems. Being web-based allows this platform to be used as an

∗sean.a.lamont@outlook.com
†john.stewart.aslanides@gmail.com
‡leike@google.com
§marcus.hutter@anu.edu.au
1For a thorough introduction to AIXIjs, aslanides.io/docs/masters_thesis.pdf

1

http://arxiv.org/abs/1703.01358v1
aslanides.io/docs/masters_thesis.pdf

educational tool, as it provides an understandable visual demonstration of theoretical results.
In addition, it allows the testing of GRL agents in several different types of environments and
scenarios, which can be used to analyze and compare models. This helps to showcase the
different strengths and weaknesses among GRL agents, making it a useful tool for the GRL
community in terms of demonstrating results. Our main work here is to extend this platform to
arbitrary discount functions. Using this, we then compare the behaviour induced by common
discount functions and compare this to what is theoretically expected.

We first provide the necessary background to understand the experiments by introducing
the RL setup, agent and planning algorithms, general discounting, and AIXIjs. We then present
details of the environment and agent implementation used for the analyses. Finally, we present
the experiments and the results, along with a discussion for each function.

2 Background

2.1 Reinforcement Learning Setup

RL research is concerned with the design and implementation of goal-oriented agents. The
characteristic approach of RL is to associate rewards with the desired goal and allow the agent
to learn the best strategy for gaining rewards itself through trial and error [14]. The agent
interacts with an environment by producing an action a, and the environment responds with
an observation and reward pair (o, r) = e which we call a percept. The history up to interaction
cycle k is given by the string of all actions and percepts, a1e1.....ak−1ek−1. To simplify notation,
this is written as æ<k. Mathematically, an agent’s policy is a stochastic function mapping a
history to an action, π : (A×E) A, while an environment is a stochastic map from a history
and an action to a percept, µ : (A × E)∗ × A E , where is a stochastic mapping. In
the context of adaptive control, Bellman [3] first introduced equations for expressing optimal
policies in both deterministic and stochastic environments, including infinite state spaces. Also
introduced was the idea of a value function. A value function is how an agent assigns value
to an environment state (or a state-action pair), where value is a measure of the expected
future discounted reward sum. To solve the Bellman equations, it is necessary to assume a fully
observable Markovian environment (a Markov Decision Process, or a MDP). In an MDP, the
agent can observe all relevant information from the environment at any time, without needing to
remember the history. Although useful for MDPs, many problems of interest lack the necessary
assumptions to tractably solve the Bellman equations. The problem of scaling RL to non-
Markovian and partially observable real world domains provides the motivation for General
Reinforcement Learning.

In such cases, it is useful to express the value function in terms of the agent’s history, with
the value of a policy π with history <t and environment µ given by the equation:

V π
µ (<t) := E

π
µ

[

∞
∑

k=t

γkrk|<t

]

(1)

Where r is the reward and γ is a discount function [9]. This equation gives the µ-expected
utility for a policy π . If we are in a MDP, then we can replace the history by the current state,
and rewrite this as a Bellman Equation [3].

2

2.2 AIµ

The GRL agent AIµ [4] is purposed to find the optimal reward in a known environment. There
are no other assumptions made about the environment, so this agent extends to partially ob-
servable cases. AIµ is simply defined as the agent which maximises the value function given by
(1). Specifically, for any environment µ,

πAIµ ∈ argmax
π

V π
µ (2)

As there is usually no way to know the true environment, the main purpose of AIµ is to
provide a theoretical upper bound for the performance of an agent for a given environment. As
we wish to isolate the effect of discounting, AIµ is the agent used for our experiments to remove
uncertainty in the agent’s model.

2.3 Generalised Discounting

A discount function is used to weight rewards based on their temporal position relative to the
current time. There are several motivations for using a discount function to determine utility,
as opposed to taking an unaltered sum of rewards. In practice, a discount function allows the
agent’s designer to decide how it would like the agent to value rewards based on how far away
they are. A discount function also serves to prevent the utility from diverging to infinity, as is
the case when using undiscounted reward sums.

Samuelson [11] first introduced the model of discounted utility, with the utility at time k
given by the sum of discounted future rewards:

Vk =

∞
∑

t=k

γt−krt (3)

This model is the most commonly used in both RL and other disciplines, but has several issues.
These include that the discount function cannot change over time, and that the value of an
action is independent of the history. Hutter and Lattimore [8] address several issues with this
model first by using the GRL framwork to allow decisions which consider the agent’s history.
They also generalise the setting to allow a change in discounting over time. Specifically, they
define a discount vector γk for each time step k, with the entries in the vector being the discount
applied at each time step t > k. Replacing γt−k with γk in (3) gives a more general model of
discounted utility, as it allows the discount function to change over time by using different
vectors for different time steps.

Using this model, Hutter and Lattimore [8] provide a general classification of time inconsis-
tent discounting. Qualitatively, a policy is time consistent if it agrees with previous plans and
time inconsistent if it does not. For example, if I plan to complete a task in 2 hours but then
after 1 hour plan to do it after another 2 hours, my policy will be time inconsistent. Formally,
an agent using discount vectors γk is time consistent iff:

∀k, ∃ak > 0 such that γk
t = akγ

1
t , ∀t ≥ k ∈ N (4)

Which is to say, the discount applied from the current time k to the reward at time t is equal
to some positive scalar multiple of the discount used for t at time 1.

3

Also presented in their work is a list of common discount functions and a characterisation
of which of these are time consistent. These form the basis for our experiments and we present
a taxonomy below:

Given the current time k, future time t > k, and a discount vector γ, we have:
Geometric Discounting: γk

t = gt, g ∈ (0, 1). Geometric discounting is the most commonly
used discount function, as it provides a straightforward and predictable way to value closer
rewards higher. It is also convenient as for γ ∈ (0, 1) it ensures the expected discounted reward
(i.e. value) will always be bounded, and therefore well defined in all instances. Geometric
discounting is always time consistent, which is apparent when considering the definition in (4).

Hyperbolic Discounting: γk
t = 1

(1+κ(t−k))β , κ ∈ R
+, β ≥ 1. Hyperbolic discounting has been

thought to accurately model human behaviour, with some research suggesting humans discount
this way when deciding actions [15]. Hyperbolic discounting is time inconsistent, which is much
of the reason why it is considered to model many irrational human behaviour patterns. It is
clear that hyperbolic discounting is time inconsistent, as it is not possible to factor the above
expression in a way which satisfies (4). Hyperbolic discounting is most commonly seen for β = 1,
with β > 1 ensuring the discounted reward sum doesn’t diverge to infinity.

Power Discounting: γk
t = t−β , β > 1. Power discounting is of interest because it causes a

growing effective horizon. This in effect causes the agent to become more far sighted over time,
with future rewards becoming relatively more desirable as time progresses. This is flexible as
there is no need to assign an arbitrary fixed effective horizon, it will instead grow over time.
Hutter and Lattimore [8] point out that this function is time consistent, which combined with
the growing effective horizon makes it an effective means of agent discounting.

2.4 Monte-Carlo Tree Search with ρUCT

Monte-Carlo Tree Search (MCTS) is a planning algorithm designed to approximate the expecti-
max search tree generated by (1), which is usually intractable to fully enumerate. UCT [7] is a
MCTS algorithm which is effective for Markovian settings. Veness et al. [16] extend this to gen-
eral environments with the ρUCT algorithm. The algortithm generates a tree comprised of two
types of nodes, ’decision’ nodes and ’chance’ nodes. A decision node reflects the agents possible
actions, while chance nodes represent the possible environment responses. A summary of the
algorithm is as follows: First, plan forward using standard Monte-Carlo simulation. Then select
an action in the tree using the UCB action policy; Define a search horizon m, maximum and
minumum reward β and α, value estimate V ′, and history h, with T (ha) being the number of
visits to a chance node, and T (h) the number of visits to a decision node. Then, for T (ha) > 0:

aUCB = argmax
a

1

m(β − α)
V ′(ha) + C

√

log(T (h))

T (ha)
(5)

If T (ha) = 0 then the best action will default to a. The parameter C is an exploration
constant, which can be modified to control the likelihood that an agent will take an exploratory
action. Veness et al. [16] remark that high values of C lead to ’bushy’ and short trees, compared
to low values yielding longer and more discerning trees. Once the best action is selected, the
values for each node are updated backwards to the root to reflect the new action. The primary

4

strength of this algorithm is that it allows for history based tree search, by using ρ as the current
environment model and planning based on that.

2.5 AIXIjs

We implement our experiments using AIXIjs, a JavaScript platform designed to demonstrate
GRL results. AIXIjs is structured as follows: There are currently several GRL agents which have
been implemented to work in different (toy) gridworld and MDP environments. Using these,
there are a collection of demos which are each designed to showcase some theoretical result in
GRL and are presented on the web page. Once a demo is selected, the user can choose to alter
some default parameters and then run the demo. This then begins a batch simulation with
the specified agent and environment for the selected number of time cycles (a batch simulation
runs the whole simulation as one job, without any interference). The data collected during the
simulation is then used to visualise the interaction. The API allows for anyone to design their
own demos based on current agents and environments, and for new agents and environments
to be added and interfaced into the system. It also includes the option to run the simulations
as experiments, collecting the data relevant to the simulation and storing it in a JSON file for
analysis.

The source code can be accessed on: https://github.com/aslanides/aixijs
While the demos can be found at: http://aslanides.io/aixijs/
or http://www.hutter1.net/aixijs/
There has been some related work in adapting GRL results to a practical setting. In particu-

lar, the Monte-Carlo AIXI approximation [16] successfully implemented a AIXI model using the
aforementioned ρUCT algorithm. This agent was quite successful, even within a “challenge do-
main” (a modified Pac-Man game with 1060 possible states) with the agent learning several key
tactics for the game and consistently improving. This example demonstrated that it is possible
to effectively adapt GRL agents to a practical setting, and is the basis for the approximation of
AIµ presented here.

Related to the AIXIjs platform is the REINFORCEjs web demo by Karpathy [6]. This
demo implements Q-Learning [17] and SARSA [10] RL methods in a grid world scenario, as
well as deep Q-Learning for two continuous state settings. The limitation of this example is its
restriction to a small set of environments, with Q-Learning and SARSA being defined only for
Markovian environments. These algorithms do not extend to more complicated environments
or agents, which is addressed by AIXIjs.

3 Technical Details

3.1 AIµ Implementation

The agent used for experiments is an MCTS approximated version of AIµ. By using AIµ, we
are removing any potential uncertainty in the agent’s model which facilitates a more accurate
analysis of the effect of discounting. This agent knows the true environment, so for a fixed
discount this implies that its policy π(s) will stay the same for any particular state, assuming a
Markovian environment.

5

https://github.com/aslanides/aixijs
http://aslanides.io/aixijs/
http://www.hutter1.net/aixijs/

Although we will not be using very large tree depth, enumerating the expectimax by solving
equation (1) is not generally feasible. We instead use MCTS to approximate the search tree,
specifically the ρUCT algorithm introduced in the background. Although UCT would suffice in
our deterministic setting, ρUCT is the default search algorithm incorporated into AIXIjs and
as such was used without modification.

3.2 Agent Plan and Time Inconsistency Heuristic

We determine the agent’s plan at time step k by traversing the tree created by ρUCT, first
selecting the highest value decision node and then choosing the corresponding chance node with
the most number of visits. In the case of the environment used here, each decision node has
only one chance child as it is deterministic. The process is then repeated up to the maximum
horizon reached by the search, and the sequence of actions taken are recorded as the agent’s
plan. The plan is recorded as a numeric string representing the sequence of actions the agent
plans to take. For example, a recorded plan of 000111 indicates the agent plans to first take
action ’0’ three times in a row and then take ’1’ three times.

If the action at cycle k is not equal to the action predicted by the plan at time k− 1 then we
consider this time inconsistent. Formally, if the following equation is satisfied then the action
at t is time inconsistent:

πγk−1(Sk) 6= πγk(Sk)

Where πγt(St) is a policy π using discount vector γt in state S at time k and πγk−1(Sk) is
the same policy using an older discount vector γk−1.

If this is true, then the action will be time inconsistent. If it is not true, the action may still
be time inconsistent in regards to older plans. This method is used to prevent false positives,
as the agent plan deep in the search tree is often not representative due to the cutoff at the
horizon.

3.3 Environment Setup

The environment we use is a deterministic fully observable finite state MDP, represented by
figure 1. This environment is structured to provide a simple means to differentiate myopic and
far-sighted agent policies. The idea behind the environment is to give the agent the option of
receiving an instant reward at any point, which it will take if it is sufficiently myopic. The other
option gives a very large reward only after following a second action for N steps. If the agent is
far-sighted enough, it will ignore the low instant reward and plan ahead to reach the very large
reward in N time steps. Formally, the agent has 2 actions from state Si : The first is to go to S0

and receive a small instant reward rI . The other takes the agent to Si+1 (where i ∈ Z/(N+1)Z)
and gives very low reward r0 < 1

N
rI , and a large reward rL > NrI for i = N − 1. In figure 1 the

straight lines represent the first action a0 while the other lines representing the second action
a1.

6

4 Experiments

4.1 Overview

In this section we present the experiments for the discount functions, which were conducted using
the AIXIjs experiment API mentioned in the background. In particular, we will investigate the
effect of geometric, hyperbolic and power discounting on the ρUCT AIµmodel. The environment
used was the instance of figure 1 parametrised by N = 6, rI = 4, r0 = 0, rL = 1000. We use
average reward as our metric for agent performance. We avoid using total reward as, in this
environment, it is monotonically increasing with respect to time. This would affect the scale
of graphs, which could obscure an agent’s behaviour. We now present the MCTS parameters,
after which we detail two specific policies prior to the experiments which comprise the rest of the
section. We introduce these policies to avoid unnecessary overlap in the analysis of geometric
and hyperbolic discounting, as they displayed very similar behaviours.

S0 S1 S2 S3 SN

rI

rI

r0 r0 r0 . . . rL

r0

Figure 1: MDP used to conduct discounting experiments

4.2 MCTS Parameters

Horizon UCB Parameter Samples
Geometric 10 0.01 10 000

Hyperbolic 10 0.01 10 000
Power 7 0.001 100 000

Figure 2: MCTS Parameters used for each discount function

It was necessary to increase the samples and lower the exploration constant for power dis-
counting because over time, the discount factor becomes exponentially lower with respect to β.
A high exploration constant would overpower the UCB expression in (5) and result in erratic
policies as there is no clear better action. Given the large number of samples, it was also nec-
essary to reduce the horizon to shorten the depth of the tree. 7 is the minimum required to see
far enough into the future to notice the delayed reward.

7

4.3 Far-Sighted Policy

With reference to figure 1, this policy takes action a1 (the alternating arrow) for every time
step. The total reward for the far-sighted policy in 200 time cycles is 33 000, given a delayed
reward of 1000 and a reward interval of 6 time steps. Figure 3 presents a plot of the average
reward of this policy in our environment.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

Time Cycles

A
v
er
a
g
e
R
ew

a
rd

Average Reward vs Time for Far Sighted Policy

Figure 3: Average reward versus time cycles for a far-sighted agent policy

The periodic nature of the delayed reward is reflected in the zig zag shape of the average
reward graph. As this policy is consistently taking a1, the time between spikes is constant.

4.4 Short-Sighted (Myopic) Agent

The second policy takes action a1 (solid arrow in figure 1) for every time step. The total reward
for this policy is 792, given an instant reward of 4. Figure 4 presents a plot of the average reward
of this policy in our environment.

The graph reflects the initial reward of 0 as the agent starts off, and then the constant reward
of 4 every following time cycle.

4.5 Geometric Discounting

We ran experiments by altering γ in increments of 0.1, ranging from 0.1 to 1.0. We found that
in all test runs, the number of time inconsistent actions given by our heuristic was 0. We found
that for γ ≤ 0.4 the agent followed exactly the myopic policy from the previous subsection,

8

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

Time Cycles

A
v
er
a
g
e
R
ew

a
rd

Average Reward vs Time for Myopic Policy

Figure 4: Average reward versus time cycles for a myopic agent policy

receiving a total reward of 792. For γ ≥ 0.6 the agent behaved as described in the far-sighted
policy subsection, achieving the optimal reward of 33 000. For γ = 0.5, the agent behaved
somewhat erratically, occasionally altering its behaviour between both policies. As this value
lies between the γ which cause strict far/short sightedness, there would be a small difference
in weighted rewards between both policies. It is therefore likely the erratic behaviour is caused
by the MCTS struggling to find the best decision, given there is a degree of innacuracy in the
tree search. The agent plan enumeration gave a consistent plan of 0000000000 for γ ≤ 0.4 and
varied between 1111100000 and 1111111111 for γ ≥ 0.6, where ’0’ and ’1’ are shorthand for a0
and a1 respectively. This variation is due to the horizon cutoff at 10, since at some points the
agent won’t see far ahead enough to plan for 2 far-sighted actions.

4.6 Hyperbolic Discounting

We varied κ between 1.0 and 3.0 in increments of 0.2, and kept β constant at 1.0. We found that
only κ = 1.8 yielded non-zero time inconsistent actions, with the total number of such actions
recorded as 200. We found for κ ≤ 1.8 that the agent followed exactly the behaviour from the
myopic policy subsection, receiving a total reward of 792. For κ > 1.8 the agent behaved as
described in the far-sighted policy subsection, achieving the optimal reward of 33 000. The plan
for κ = 1.8 was 0111111000 at every time step. For κ > 1.8 the plan stayed as 1111111111, and
κ ≤ 1.8 gave a constant plan of 0000000000.

In the interest of reproducibility, the experiments for hyperbolic discounting were performed
on commit 3911d73 on the provided github link. The results can also be replicated with recent

9

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

Time Cycles

A
v
er
a
g
e
R
ew

a
rd

Average Reward vs Time for Power Discounting (Beta: 1.01)

Figure 5: Average reward versus time cycles for power discounting

and future versions, however the MCTS parameters may need to be adjusted.

4.7 Power Discounting

We only used a single β value in this case, with β= 1.01. We note that any change in β would
result in similar behaviour, with only the length and time between these stages changing (hence
we need only present the results of one β value). No time inconsistent actions were detected for
this function. The total reward obtained by the agent was 15412.

The behaviour in this circumstance follows three stages: For around 100 time steps, the
agent behaves completely myopically, reflected by the small continuous rise in the first half of
the graph. The discount function then reaches a stage where distant rewards are weighted high
enough so that the agent decides to act far-sightedly. For several time steps, the agent collects
the delayed reward then goes to the instant one for a few cycles. The number of cycles it stays
there gradually decreases until it strictly follows the far-sighted policy. This can be seen in the
graph, as the intervals between peaks are larger from cycles 100-150 than 150-200 when the
agent acts completely far-sighted.

5 Discussion

In regards to time inconsistent agent behaviour, the results were consistent with theoretical
predictions. Geometric discounting was, for all instances of γ, time consistent as expected.

10

Somewhat suprisingly, hyperbolic discounting was time consistent for all measured κ except 1.8
when it was continuously acting inconsistently. The results of power discounting also lacked any
time inconsistent actions which is expected.

The hyperbolic agent plan of 0111111000 for κ = 1.8 reflects some interesting behaviour.
We can see the agent is planning to stay at the instant reward for the next time step, and then
move off to collect a delayed reward. But as this plan is the same for all time steps, the agent
continuously stays on the instant reward planning to do the better long term action later. In
effect, the agent is eternally procrastinating. The fact that this behaviour can be induced with
this function also supports the claim that hyperbolic discounting can model certain irrational
human behaviour. We note the trailing 0s are an artifact of the horizon being too low to see far
ahead enough to notice another delayed reward, given the horizon was only 10.

The results of power discounting clearly demonstrate how a growing effective horizon can
effect an agent’s policy. Initially the agent is too short sighted to collect the delayed reward, but
over time this reward becomes more heavily weighted compared to the instant reward. After
some time the agent starts to collect the delayed reward and soon is fixed to a far-sighted policy.
This shows that a growing effective horizon can cause an agent to collect distant rewards only
after some time has passed, which again reflects what is theoretically predicted.

There will continue to be new results proven for GRL, so an avenue for future work would be
to demonstrate those results in a similar fashion to the work presented here. Our contributions
to the AIXIjs framework would allow for this to be done easily for results pertaining to agent
discounting. Other future work would be the development of practical GRL systems which
extend beyond a toy environment, and which can be used for non-trivial tasks.

6 Summary

We have adapted the platform AIXIjs to include arbitrary discount functions. Using this, we
were able to isolate time inconsistent behaviour and illustrate the effect of the discount function
on an agent’s farsightedness. We were able to show it is possible to use power discounting in
a concrete setting to observe the impact of a growing effective horizon, which influenced the
time at which an agent chose to collect distant rewards. We also demonstrated that hyperbolic
discounting can induce procrastinating behaviour in an agent. Our current framework now
permits a larger class of experiments and demos with general discounting, which will be useful
for future research on the topic.

References

[1] J Aslanides. AIXIjs: A software demo for general reinforcement learning, Australian
National University, 2016.

[2] J Aslanides and M. Hutter and J. Leike., General Reinforcement Learning Algorithms:
Survey and Experiments, 2016. http://www.hutter1.net/official/bib.htm#grlsurexp

[3] R Bellman. Dynamic programming. Princeton, NJ: Princeton University Press, 1957.

11

[4] M. Hutter. A theory of universal artificial intelligence based on algorithmic complexity.
ISDIA-14-00, ISDIA, arXiv:cs.AI/0004001, 2000.

[5] M. Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic prob-
ability. Springer, 2005.

[6] A. Karpathy. Reinforcejs, 2015. https://cs.stanford.edu/people/karpathy/reinforcejs /in-
dex.html.

[7] L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. Euro. Conf. Mach.
Learn. Berlin, Germany : Springer, pp. 282-293., 2006.

[8] T. Lattimore and M. Hutter. General time consistent discounting. Theoretical Computer
Science, 519:140-154, 2014.

[9] J. Leike. What is AIXI? - An Introduction to General Reinforcement Learning, 2015.
https://jan.leike.name/AIXI.html.

[10] G. A. Rummery andM. Niranjan. On-line Q-learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.

[11] P. Samuelson. A note on measurement of utility. The Review of Economic Studies, 4(2) :
155-161, 1937.

[12] D. Sliver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, N. Kalch-
brenner, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature 529, 484-489, 2016.

[13] R. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3, 9-44., 1988.

[14] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[15] R. Thaler. Some empirical evidence on dynamic inconsistency. Economics Letters, 8(3) :
201 - 207, 1981.

[16] J. Veness, M. Hutter, W. Uther, D. Silver, and K. S. Ng. A Monte-Carlo AIXI Approxi-
mation. Journal of Artificial Intelligence Research 40: 95-142, 2011.

[17] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8, 279-292, 1992.

12

http://arxiv.org/abs/cs/0004001

	1 Introduction
	2 Background
	2.1 Reinforcement Learning Setup
	2.2 AI
	2.3 Generalised Discounting
	2.4 Monte-Carlo Tree Search with UCT
	2.5 AIXIjs

	3 Technical Details
	3.1 AI Implementation
	3.2 Agent Plan and Time Inconsistency Heuristic
	3.3 Environment Setup

	4 Experiments
	4.1 Overview
	4.2 MCTS Parameters
	4.3 Far-Sighted Policy
	4.4 Short-Sighted (Myopic) Agent
	4.5 Geometric Discounting
	4.6 Hyperbolic Discounting
	4.7 Power Discounting

	5 Discussion
	6 Summary

